Please use this identifier to cite or link to this item: http://hdl.handle.net/11144/5297
Title: Enhancing citizens on science information quality through rating of data
Authors: Nascimento, João António Pinto
Advisor: Silvestre, Daniel
Keywords: Citizen Cience
Citizen Application
AWS
AWS Sagemaker
AWS S3
Issue Date: 2-Feb-2021
Abstract: Com o objetivo de automatizar tarefas, muitos classificadores têm sido propostos, com diferentes compromissos entre performance e robustez. Quando se pretende classificar um stream de dados extraídos sobre um processo cujo estado está em constante evolução, o desconhecimento da dinâmica do sistema e informação incorreta dificultam a tarefa de identificar que subconjunto dos dados são confiáveis e devem ser utilizados. Este problema é central em aplicações como a deteção de fogos florestais, presença de lixo nas praias, medições de ruído e poluição nas cidades e outras para as quais os cidadãos sejam chamados a fornecer dados através de sistemas computacionais. Utilizadores mal-intencionados, dados corrompidos por ruído, sensores baratos, entre outros, podem conduzir a erros na deteção. Esta tese visa desenvolver um serviço capaz de detetar anomalias em dados e prever os valores seguintes, tendo em conta o historial. Partindo do pressuposto que os dados serão fornecidos através de uma aplicação mobile para alertas de incêndios florestais e deteção de lixo nas praias, foi criada uma aplicação de backend capaz de suportar o volume expectável de dados bem como executar o seu processamento. A infraestrutura desenvolvida para AWS (Amazon Web Services) contém várias ferramentas de deteção de anomalias e previsão, entre elas o AWS Sagemaker (Ferramenta de machine learning) e o AWS S3 (Amazon Simple Storage Service, armazenamento de objetos). Através das experiências efetuadas foi possível a deteção de anomalias, bem como a previsão de valores futuros, num dataset composto por 22695 entradas de medições de temperatura de um componente interno de uma grande máquina industrial provenientes do Numenta Anomaly Benchmark (NAB).
URI: http://hdl.handle.net/11144/5297
Thesis Degree: Dissertação de mestrado em Engenharia Informática e de Telecomunicações
Appears in Collections:DCT - Dissertações de Mestrado

Files in This Item:
File Description SizeFormat 
Tese_Joao_Nascimento_30003572[68572][68690].pdf2,2 MBAdobe PDFThumbnail
View/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.