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Abstract. Purpose. Enterprise knowledge graphs (EKG) in RDF consolidate and semantically in-
tegrate heterogeneous data sources into a comprehensive dataspace. However, to make an external
relational data source accessible through an EKG, an RDF view of the underlying relational database,
called an RDB2RDF view, must be created. The RDB2RDF view should be materialized in situations
where live access to the data source is not possible, or the data source imposes restrictions on the type
of query forms and number of results. In this case, a mechanism for maintaining the materialized view
data up-to-date is also required. This article then addresses the problem of the efficient maintenance of
externally materialized RDB2RDF views.
Approach . This article proposes a formal framework for the incremental maintenance of externally
materialized RDB2RDF views, in which the server computes and publishes changesets, indicating the
difference between two states of the view. The EKG system can then download the changesets and
synchronize the externally materialized view. The changesets are computed based solely on the update
and the source database state, and require no access of the content of the view.
Findings. The central result of the article shows that changesets computed according to the formal
framework correctly maintain the externally materialized RDB2RDF view. The experiments indicate
that the proposed strategy supports live synchronization of large RDB2RDF views and that the time
taken to compute the changesets with the proposed approach was almost three orders of magnitude
smaller than partial rematerialization, and three orders of magnitude smaller than full rematerialization.
Originality . The main idea that differentiates the proposed approach from previous work on incremen-
tal view maintenance is to explore the object-preserving property of typical RDB2RDF views, so that
the solution can deal with views with duplicates. The algorithms for the incremental maintenance of
relational views with duplicates published in the literature require querying the the materialized view
data to precisely compute the changesets. By contrast, the approach proposed in this article requires
no access to view data. This is important when the view is maintained externally, because accessing a
remote data source may be too slow.

Keywords. RDF View Maintenance, RDF View, Enterprise Knowledge Graph, Linked Data, Rela-
tional Database

Article Type. Research Paper

1 Introduction

Enterprise knowledge graphs (EKG) semantically integrate heterogeneous data sources into a comprehensive
dataspace (Pan et al., 2017). An EKG provides a unified data layer that is semantically connected to the
data sources thereby providing applications with integrated access to the data sources. In this way, an EKG
can support unplanned ad hoc queries and data exploration without requiring a time-consuming data pre-
processing step.

A key element of an EKG is the domain ontology, which specifies the common vocabulary for integrating
data exported by the data sources. The domain ontology acts as a semantic layer that combines and enriches
the data stored in data sources. It represents how data are organised and their intended meaning. Therefore,
users can query the ontology transparently, without having to deal with the data source schemes. This article
concentrates on domain ontologies defined in RDF.
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A data source may export an RDF view, which is defined by a set of mapping rules that maps concepts
of the data source to concept of the RDF domain ontology. This article focuses on RDF views of relational
databases, called RDB2RDF views.

A view may be virtual or materialized. In the virtual approach, view data are retrieved directly from the
data source at query time. This is achieved by unfolding the view mappings, thus translating user queries
into queries over the data sources. The advantage of virtual views is that data are always up-to-date with
respect to the data sources. On the other hand, it may not be feasible to implement a virtual view, if live
access, that is, runtime access, to the data source is in some way restricted. This approach, called VKG
(virtual Knowledge graph), has been implemented in several systems (Kalaycı et al., 2020; Calvanese et al.,
2020; Ding et al., 2021) and adopted in a wide range of use cases (Xiao et al., 2019).

In the materialized approach, view data are materialized and stored. An externally materialized view is a
materialized view which is stored in a system different from that of the data source. Materialized views tend
to achieve better query performance than virtual views. Also, they are the only alternative when live access
to the data source is restricted. However, a materialized view requires some mechanisms to maintain its data
when the underlying data source is updated. The main contribution of this article is an efficient maintenance
algorithm for externally materialized RDB2RDF views.

Basically, there are two strategies for materialized view maintenance. Rematerialization recomputes view
data at pre-established times, whereas incremental maintenance periodically modifies part of the view data
to reflect updates to the data source. Previous research have shown that incremental maintenance generally
outperforms full view rematerialization (Abiteboul et al., 1998; Ali et al., 2000; Ceri and Widom, 1991).
Incremental maintenance also enables live synchronization of the view data with respect to the data source,
that is, it enables maintaining view data up-to-date with only a small delay. This is an important property
when the data source is frequently updated.

A strategy for materialized view maintenance is for a data source to compute and publish changesets.
A database changeset indicates the difference between two states of the database, and a view changeset
indicates the difference between two states of a view. From this point on, the term changeset will be used as
a shorthand for view changeset. A materialized view maintenance algorithm can then download changesets and
use them to update the materialized view data. For instance, DBpedia (DBp, Last accessed in Feb/2022) and
LinkedGeoData (LG, Last accessed in Feb/2022) publish their changesets in a public folder. The computation
of changesets can be challenging for externally materialized views when the database server has no access to
the view data. Indeed, in the case of views with duplicates (Griffin and Libkin, 1995), the view maintenance
algorithms published in the literature require the use of the materialized view data to compute the changeset.

This article proposes a novel strategy (see Figure 1) for the incremental maintenance of externally mate-
rialized RDB2RDF views. The strategy adopts triggers to compute and publish changesets of the relational
database, and features a synchronization tool that downloads the changesets and synchronizes the externally
materialized RDB2RDF view.

Fig. 1. Incremental Maintenance of Externally Materialized RDB2RDF View.

Four design goals guided the development of the proposed strategy:

1. Simplicity — minimizing the complexity associated with the creation of the infrastructure responsible
for the construction of the changesets;

2. Efficiency of operation — identifying the minimal data that permits the construction of changesets that
correctly maintain the view in the face of updates on the source database;
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3. No access of the content of the view — computing the changeset based solely on the update and the
source database state;

4. Self-maintenance of RDB2RDF views — computing the new view state based solely on the changeset
and the view state.

The proposed strategy is based on three key ideas. First, the authors noted that RDB2RDF views typically
have the so-called object-preserving property. That is, they preserve the base entities (objects) of the source
database, rather than creating new entities (Motschnig-Pitrik, 2000). Therefore, an instance of the RDF view
corresponds to a pivot tuple in the database, and both represent the same real-world object. The main ideas
that differentiate the proposed approach from previous work on relational view maintenance is to explore the
object-preserving property of typical RDB2RDF views, which allows the identification of the specific pivot
tuples that are relevant to a data source update. Only the portion of the view associated with the relevant
tuples should be re-materialized. One may then characterize the approach as that of “tracking the relevant
tuples in the pivot relations for a given update” rather than “tracking the updated triples in the view for a
given update”, as adopted by view maintenance algorithms published in the literature.

Second, the authors introduce a formalism to specify object preserving-view mappings. The formalism is
based on first-order logic, and has been widely adopted in Ontology-Based Data Access (OBDA) (Sequeda
et al., 2014), data exchange (Murlak et al., 2014) and data integration (Lenzerini, 2002) systems. The for-
malism makes it easier to understand the semantics of the mapping, and provides sufficient information to
support: (1) The identification of the tuples that are relevant to a data source update; (2) The automatic
construction of the procedures that actually compute the changesets; (3) A rigorous proof of the correctness
of the approach.

Third, the authors propose a formal framework for computing the correct changeset for an object pre-
serving view. In the proposed framework, the content of an RDB2RD view is stored in an RDF dataset that
contains a set of named graphs, used to describe the context in which the triples were produced. The main
reason for separating triples into distinct named graphs is that duplicated triples, produced by tuples in dif-
ferent relations, will be in different named graph. A changeset is computed based solely on the source update
and the source state before and after the update and, hence, no access to the materialized view is required.
This is important when the view is externally maintained (Volz et al., 2005), because accessing a remote data
source may be too slow. Indeed, the experiments indicate that the time taken to compute the changesets
with the proposed framework was almost three orders of magnitude smaller than partial rematerialization,
and three orders of magnitude smaller than full rematerialization.

The remainder of this article is organized as follows. Section 2 discusses related work. Section 3 presents
the formalism used for specification of object-preserving RDB2RDF views. Section 4 introduces the case
study that is used throughout the article. Section 5 formalizes the materialization of the data graph for
an RDB2RDF view. Section 6 presents a formal framework for computing the correct changeset for an
RDB2RDF view. Section 7 describes LinkedBrainz Live, a tool that implements the proposed strategy to
propagate updates over the MusicBrainz database to LinkedMusicBrainz view. Section 8 presents the
conclusions.

2 Related Work

This section separates related work into three groups. First, it reviews proposals that address the incremen-
tal view maintenance problem. Then, it overviews current techniques developed to manage knowledge graph
evolution. Finally, it is covers Virtual Knowledge Graph (VKG) approaches.

Incremental Maintenance Problem: The Incremental View Maintenance problem has been extensively stud-
ied in the literature for relational views (Ceri and Widom, 1991; Griffin and Libkin, 1995), object-oriented
views (Ali et al., 2000, 2003), semi-structured views (Liefke and Davidson, 2000; Zhao et al., 2017), and XML
Views (Anonymous, 2008; Jin and Liao, 2010; Fegaras, 2011).

Most of the work in relational view maintenance proposes an algorithm that computes the changes for
the materialized view when the base relations are updated. The work in (Ceri and Widom, 1991) is closest
related to this. It shows that the use of triggers is effective for incremental maintenance because most of the
work is done at view definition time. However, the method the authors propose does not support efficient
maintenance of views with duplicates.
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(Griffin and Libkin, 1995) study the problem of efficient maintenance of materialized views with duplicates.
However, the proposed algorithms are not suitable for externally materialized views, because they require
querying the content of the materialized view to precisely compute the changesets. For example, the view
W is defined using a query Q that is defined through a bag algebra expression. Their proposal is to update
W according to changes that the transactions performed on the source data (called by those authors of base
tables) of W . To do this, they identified change propagation rules to derive the incremental expressions that
calculate the set of tuples to be added/deleted to/from W from a given expression Q and from insertions
and deletions that a single transaction wants to perform. These rules are only suitable for the centralized
database, because it requires that the source data and the views are in the same database. In addition, bag
algebra expressions could not be used in the context of this article, which adopts the standard set semantics.

(Konstantinou et al., 2015) investigate the problem of incremental generation and storage of an RDF
graph that is the result of exporting relational database contents. Their strategy, which is called here as
partial re-materialization, requires annotating each triple with the mapping definition that generated it. In
this case, when one of the source tuples changes (i.e., a table appears to be modified), the triples map
definition will be executed for all tuples generated using the affected table and, thus, all triples generated
using the affected tables are rematerialized. By contrast, in the approach proposed in this article, it is possible
to identify which tuples in the affected tables are possibly affected by the update, and only those tuples are
rematerialized.

To summarize, the approach proposed in this article differs from previous work on incremental view main-
tenance in that it explores the object-preserving property of typical RDB2RDF views, so that the solution
can deal with views with duplicates. Furthermore, the proposed approach requires no access to view data,
contrasting with the algorithms for the incremental maintenance of relational views with duplicates published
in the literature, which require querying the materialized view data to compute the changesets.

KG evolution: Various approaches have been proposed to deal with the dynamic evolution of KG in dif-
ferent subjects, such as: (i) detect changes during their evolution (Tasnim et al., 2019; Arispe Riveros et al.,
2020), (ii) represent change information (using vocabularies) (Singh, 2019), (iii) propagate changes to repli-
cas or federated systems (Endris et al., 2015; Faisal et al., 2016), and (iv) detect change between LOD
datasets (Papavasileiou et al., 2013; Roussakis et al., 2015; Zeginis et al., 2011).

Approaches such as described in (Tasnim et al., 2019; Arispe Riveros et al., 2020) focus on dealing with
the problem of multiple versions of the same knowledge graph, keeping a summary out of different versions
of the knowledge graph. (Singh, 2019) defines a set of terms for describing changes to resource descriptions.
These proposals do not address the incremental maintenance data; thus, their focus is different from the
approach proposed in this article.

(Endris et al., 2015) introduce an approach for interest-based RDF update propagation that consistently
maintain a full or partial replication of large Linked Open Data (LOD) datasets. (Faisal et al., 2016) present
an approach for dealing with co-evolution, which refers to the mutual propagation of the changes between a
replica and its origin dataset. Both approaches rely on the assumption that either the source dataset provides
a tool to compute a changeset in real-time or a third-party tool can be used for this purpose. Therefore, the
contribution of this article is complementary and relevant to satisfy their assumption.

The works described in (Papavasileiou et al., 2013; Roussakis et al., 2015; Zeginis et al., 2011) address the
problem of change detection between versions of LOD datasets. In (Zeginis et al., 2011), a low-level change
detection approach is used to report simple insertion/deletion operations. In (Papavasileiou et al., 2013; Rous-
sakis et al., 2015), a high-level change detection approach is used to provide deltas that are more readable
to humans. Despite their contributions to understanding and analyzing the dynamics of Web datasets, these
techniques cannot be applied to compute changesets for RDB2RDF views.

Virtual Knowledge Graph (VKG) approaches: Ontop (Xiao et al., 2020) is a canonical example of the VKG
approach. Ontop does not materialize an RDF view of the relational database but maintains a virtual RDF
view. During runtime, Ontop translates queries over the knowledge graph to SQL queries over the database.
A survey of virtual graph systems can be found in (Xiao et al., 2019). As such, Ontop cannot be directly
compared with the approach proposed in this article, which has a different motivation.
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GraphDB (Ontotext, 2022) offers tools to migrate and materialize RDF data from relational databases, as
well as to define virtual RDF views. GraphDB integrates with Ontop and extends it with multiple GraphDB
specific features.

Contrasting with the VKG strategies, the approach proposed in this article was designed to cope with
contexts where the RDF views must be externally materialized (hence the title of the article). Indeed, the
Linked Open Data cloud has large RDF datasets that have been completely or partially replicated and inte-
grated externally in other knowledge graphs. This calls for view maintenance strategies. This article argues,
and the experiments reported confirm, that the proposed approach performs better than rematerialization
and that it meets the requirement of “live synchronization”, as already pointed out in the introduction.

3 Object Preserving RDB2RDF Views

3.1 Basic Concepts and Notation

As usual, a relation scheme is denoted as R[A1, . . . , An]. The relational constraints considered in this article
consist of mandatory (or not null) attributes, keys, primary keys and foreign keys. In particular, F(R:L, S:K)
denotes a foreign key, named F, that relate R and S, where L and K are lists of attributes from R and S,
respectively, with the same length.

A relational schema is a pair S = (R, Ω), where R is a set of relation schemes and Ω is a set of relational
constraints such that: (i) Ω has a unique primary key for each relation scheme in R; (ii) Ω has a mandatory
attribute constraint for each attribute which is part of a key or primary key; (iii) if Ω has a foreign key of the
form F(R:L, S:K), then Ω also has a constraint indicating that K is the primary key of S. The vocabulary
of S is the set of relation names, attribute names, and foreign key names used in S . Given a relation scheme
R[A1, . . . , An] and a tuple variable t over R, t.Ak denotes the projection of t over Ak. Selections over relation
schemes are defined as usual.

Let S = (R,Ω) be a relational schema and R and T be relation schemes of S . A list φ = [F1, . . . , Fn−1]
of foreign key names of S is a path from R to T iff there is a list R1, . . . , Rn of relation schemes of S such
that R1 = R, Rn = T and Fi relates Ri and Ri+1. In this case, the tuples of R reference tuples of T through
φ. A state σ of a relational schema S assigns to each relation scheme R of S a relation R(σ), in the usual
way.

An ontology vocabulary, or simply a vocabulary, is a set of class names, object property names and datatype
property names. An ontology is a pair O = (V ,Σ) such that V is a vocabulary and Σ is a finite set of formulae
in V , the constraints of O. The constraints include the definition of the domain and range of a property, as
well as cardinality constraints, defined in the usual way.

3.2 Specification of Object Preserving RDB2RDF View

This section presents the formalism used for the specification of object-preserving RDB2RDF views. By
restricting to this class of views, it is possible to precisely identify the specific tuples that are relevant to a
data source update w.r.t. an RDB2RDF view.

Let O = (V ,Σ) be a target ontology, that is, the organization’s ontology, and let S = (R,Ω) be a relational
schema, with vocabulary U . Let X be a set of scalar variables and T be a set of tuple variables, disjoint
from each-other and from V and U .

The formal definition of an RDB2RDF view is similar to that given in (Sequeda et al., 2014; Poggi et al.,
2008). An RDB2RDF view is a triple W= (V, S , M), where:

1. V is the vocabulary of the target ontology ;
2. S is the source relational schema; and
3. M is a set of mappings between V and S , defined by transformation rules.

Intuitively, a view satisfies the object-preserving property iff it preserves the base entities (objects) of
the source database, rather than creating new entities from the existing ones (Motschnig-Pitrik, 2000). More
precisely, a view W= (V, S , M) satisfies the object-preserving property iff:

– the instances of the classes in V correspond to tuples in selected relations of S , which are called the pivot
relations of W;
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– the values of datatype properties in V of these instances are given by (functions of) attributes in the
corresponding tuples, or in related tuples;

– the object properties in V correspond to relationships between tuples in the pivot relations of the source
database.

A transformation rule of W is an expression of the form C(x) ← Q(x) or of the form P(x,y) ← Q(x,y),
where C and P are class and property names in V , and Q(x) and Q(x,y) are queries over S whose target
clauses contain one and two variables, respectively.

The formalism based on DATALOG (Abiteboul et al., 1995) for the specification of the queries Q(x) and
Q(x,y) was adopted, which appear on the RHS of the transformation rules. This formalism is much simpler
than general query languages, such as SQL, and RDB2RDF mapping languages, such as R2RML (Hert et al.,
2011), but it is expressive enough to specify object preserving views, the class of views that is the focus on
in this article.

Table I. Examples of built-in predicates

Queries Q(x) and Q(x, y) are expressed as a list of literals. A literal can be: (1) a range expression of
the form R(r), where R is a relation name in U and r is a tuple variable in T ; (2) a built-in predicate or
function, such as those in Table I. The inclusion of built-in predicates and functions allows the formalism to
capture specific notions of concrete domains, such as “string concatenation” and “less than”, required for the
specification of complex mappings and restrictions.

Table II. Transformation Rules

In this article, three specific types of transformation rules were adopted, which are defined in Table II:
Class Transformation Rule (CTR), Datatype Property Transformation Rule (DTR), and Object Property
Transformation Rule (OTR).

Intuitively, a CTR ψ maps tuples of R into instances of class C in V . The predicate B[r, x] establishes
a semantic equivalence relation between a tuple r in R, called the pivot tuple, and an instance x of C (i.e.,
intuitively, r and x represent the same real-world entity).

Since the present proposal is only interested in object preserving views, the predicate B[r,x] should define
a partial one-to-one function: (a) each pivot tuple r in R should correspond to at most one instance x of C;
(b) different pivot tuples r1, r2 should correspond to different instances x1, x2 of C. Then, r and x are said
to be semantically equivalent, denoted r ≡ x, w.r.t the CTR ψ.

Intuitively, a DTR ψ defines the values of the datatype property P for the instances of class C. These
values may correspond to attributes of the pivot tuple r, or attributes of tuples related to r, as specified by
H (see Table II). Here, there is no restriction on the predicate H, which may associate several values y to
the same tuple r.

To interpret an OTR ψ, remember that the right-hand side of the CTRs ψD and ψG define instances of
classes D and G, respectively. So, the OTR ψ maps relations between tuples of RD and RG to instances of
the object property P, as specified by H. Again, there is no restriction on the predicate H.

The approach proposed in this article efficiently computes changesets by exploring the object-preserving
property, which allows the precise identification of the tuples in the pivot relations whose corresponding
instances may have been affected by an update. The advantages of this approach are: (1) it simplifies the
specification of the view, as the formalism is specifically designed to describe the correspondences that define
an object-preserving view; (2) the restrictions on the structure of the queries help ensure the consistency of the
specification of the view; (3) the formal expressions that define the queries can be explored to automatically
construct the procedures that compute the changesets that maintain the RDB2RDF view; (4) it facilitates
the task of providing rigorous proofs for the correctness of the proposed approach.
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The problem of generating transformation rules is addressed in (Anonymous, 2013, 2014) and is outside
of the scope of this work. However, Table III summarizes a set of Transformation Rule (TR) patterns that
lead to the definition of relational to RDF mappings that guarantee that the RDF views satisfies the object
preserving property by construction. Table I shows the definitions of the concrete predicates used by the
TR Patterns in Table III. The TR Patterns support most types of data restructuring that are commonly
found when transforming relational data to RDF, and they suffice to capture all R2RML mapping patterns
proposed in the literature (Sequeda et al., 2012; Das et al., 2012). In (Anonymous, 2014), the authors proposed
an approach to automatically generate R2RML mappings, based on a set of TRs Patterns. The approach
uses relational views as a middle layer, which facilitates the R2RML generation process and improves the
maintainability and consistency of the mapping.

Table III. Transformation Rule Patterns

4 Case Study: MusicBrainz RDF

MusicBrainz (Mus, Last accessed in Feb/2022) is an open music encyclopedia that collects music metadata.
The MusicBrainz relational database is built on the PostgreSQL relational database engine and contains all
MusicBrainz music metadata. This data includes information about artists, release groups, releases, record-
ings, works, and labels, as well as the many relationships between them. Figure 2(a) depicts a fragment of
the MusicBrainz relational database schema (for more information about the original scheme, see (MBz,
Last accessed in Feb/2022)). Each relation has a distinct primary key, whose name ends with “id”, except for
gid, which is a Universally Unique IDentifier (UUID) for use in permanent links and external applications.
The relations Artist, Medium, Release, Recording and Track, in Figure 2(a) represent the main concepts. The
relation ArtistCredit represents an N:M relationship between Artist and Credit. The labels of the arcs, such
as fk1, are the names of the foreign keys.

The case study uses an RDB2RDF view, called MusicBrainz RDF , which is defined over the rela-
tional schema in Figure 2(a). Figure 2(b) depicts a fragment of the ontology used for publishing the Mu-
sicBrainz RDF view. It reuses terms from three well-known vocabularies, FOAF (Friend of a Friend), MO
(Music Ontology) and DC (Dublin Core).

Table IV shows a set of transformation rules that partially specify the mapping between the relational
schema in Figure 2(a) and the ontology in Figure 2(b), obtained with the help of the tool described in (Anony-
mous, 2014).

For the examples in the following sections, consider the database state shown in Figure 3. The transfor-
mations rules ψ1 and ψ2, in Table IV, are examples of the CTR Pattern. The predicate hasURI is defined in
Table I. The CTR ψ1 indicates that, for each tuple r in Artist, one should:

1. Compute the URI s such that hasURI (mbz:, r.gid, s)=true.
2. Produce triple (s rdf:type mo:MusicArtist). Therefore, r and s are semantically equivalent.

Table IV. Examples of Transformation Rules

The CTR ψ2 indicates that, for each tuple r in Artist, where r.type = 1, one should:

1. Compute the URI s such that hasURI (mbz:,r.gid, s)=true.
2. Produce triple (s rdf:type mo:SoloMusicArtist). Therefore, r and s are semantically equivalent.

Note that attribute gid is a key for relation Artist. Therefore, different tuples in Artist generate different
URIs, i.e., different instances. Also, note that ψ1 and ψ2 use the same predicate hasURI. Therefore, if a tuple
r is mapped to triples (x rdf:type mo:MusicArtist) and (y rdf:type mo:SoloMusicArtist), then x=y.
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Fig. 2. (a) Fragment of MusicBrainz Schema and (b) Fragment of MusicBrainz RDF View Ontology.
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Fig. 3. State Example for Relations in Figure 2(a).

Considering the database state in Figure 3, CTRs ψ1 and ψ2 produce the following triples:
(mbz:r.ga1 rdf:type mo:MusicArtist);
(mbz:r.ga1 rdf:type mo:SoloMusicArtist);
(mbz:r.ga2 rdf:type mo:MusicArtist);
(mbz:r.ga3 rdf:type mo:MusicArtist); and
(mbz:r.ga3 rdf:type mo:SoloMusicArtist).

The transformation rule ψ10, in Table IV, is an example of the DTR Pattern. The predicates nonNull(v)
and RDFLiteral(u, A, R, v) are defined in Table I. Rule ψ10 matches the value of attribute name of relation
Artist with the value of datatype property foaf:name, whose domain is mo:MusicArtist. It indicates that, for
each tuple r of R, one should:

1. Compute the URI s for the instance of mo:MusicArtist that r represents, using the CTR ψ1. Therefore,
s and r are semantically equivalent.

2. For each value v, where v is the literal representation of r.name and r.name is not NULL, produce triple
(s foaf:name v).

Considering the database state in Figure 3, ψ10 produces the following triples:
(mbz:ga1 foaf:name “Kungs”);
(mbz:ga2 foaf:name “Cookin’s on 3 B.”); and
(mbz:ga3 foaf:name “Kylie Auldist”).

The transformations rules ψ7 and ψ8, in Table IV, are examples of the OTR Pattern. The predicate F(r,
s), where F is a foreign key of the form F(R:L, S:K), is defined in Table I. For example, rule ψ7 matches a
relationship between a tuple r of Artist and a tuple r3 in Track to instances of the object property foaf:made,
whose domain is mo:MusicArtist and range is mo:Track. It indicates that, for each tuple r of R, one should:

1. Compute the URI s for the instance of mo:MusicArtist that r represents, using the CTR ψ1. Therefore,
s and r are semantically equivalent.

2. For each tuple r3 of Track such that r is related to r3 through path [fk1, fk2, fk3], compute the URI g
for the instance of mo:Track that r3 represents (using CTR ψ5). Therefore, r3 and g are semantically
equivalent.

3. Produce triple (s foaf:made g)

Considering the database state in Figure 3, ψ7 produces the following triples:
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(mbz:ga1 foaf:made mbz:t2 );
(mbz:ga2 foaf:made mbz:t1 ); and
(mbz:ga3 foaf:made mbz:t1 ).

5 Materialization of the Data Graph for an RDB2RDF view

The materialization of the data graph for an RDB2RDF view requires translating source data into the
RDB2RDF view vocabulary as specified by the mappings. An important technical issue that arises in this
process is the possibility of duplicated triples, i.e., triples which are generated more than once due to different
assignments to the variables in the body of one or more transformation rules. Indeed, the main difficulty for
the incremental maintenance of views with duplicates is for delete and update operations. Recall that, by
definition, the same triple cannot be present twice in an RDF triple store. Thus, if a tuple is removed, it is
not possible to determine whether the corresponding triples should be deleted from the view, because triples
may still be produced by another tuple in the database.

For a proper handling of the issue of duplicates, it becomes necessary to distinguish between two types
of duplication:

1. Duplicated triples generated from different pivot relations (see Table II for definition of pivot relation);

2. Duplicated triples generated from the same pivot relation.

For the case of duplicated triples generated from different pivot relations, a solution based on named
graphs is adopted. In the proposed framework, the content of an RDF2RDB view is stored in an RDF
dataset that contains a collection of named graphs. As in (Carroll et al., 2005), a named graph is defined
as a pair comprising a URI and an RDF graph. A named graph can be considered as a set of quadruples
(or “quads”) having the subject, predicate, and object of the triples as the first three components, and the
graph URI as the fourth element. Each quadruple is interpreted similarly to a triple in RDF, except that the
predicate denotes a ternary relation, instead of a binary relation. This way of representing quadruples, called
quad-statements, was incorporated in the specification of N-Quad (nQu, 2014).

The main reason for separating triples into distinct (named) graphs is that duplicated triples, produced
by tuples in different relations, will be in different named graphs (context). This is an important property
for supporting duplicated triples generated by different tuples (Theorem 1 in Section 6.4).

For the case of duplicated triples generated from the same pivot relation, the proposed solution requires
detecting the pivot tuples that are possibly affected by an update, and then to re-materializing all triples
produced by the affected tuples. In particular, the proposal may be characterized as that of “tracking the
relevant tuples in the pivot relations for a given update” rather than “tracking the updated triples in the
view for a given update”.

The following definitions formalize the materialization of the viewW= (V, S , M) as the result of applying
the Transformation Rules (TRs) in M against a state σ of database S .

For the examples in this section, consider the RDB2RDF view
MusicBrainz RDF defined in Section 4, and the database state shown in Figure 3. Also, consider that
mbz:ga, mbz:gm, mbz:gr, and mbz:gt are the named graph URIs for the pivot relations Artist, Medium,
Recording, and Track, respectively.

In the rest of the article, R(σ) denotes the relation associated with the relation scheme R in the database
state σ.

Definition 1. Let Ψ be a TR in M and r1, . . . ,rn be tuple variables appearing in Ψ associated with relations
R1, . . . , Rn, where n ≥ 2 and ri 6= rj for i 6= j. Also, let σ be a database state and let p1, . . . , pn be tuples in
R1(σ), . . . , Rn(σ).

1. Ψ [r1/p1 , . . . , rn/pn] denotes the TR obtained from Ψ by substituting the tuples p1, . . . , pn for the tuple
variables r1, . . . , rn, respectively.

2. Ψ [r1/p1 , . . . , rn/pn](σ) denotes the set of triples which are produced when Ψ [r1/p1, . . . , rn/pn] is applied
to σ.
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Definition 2 (RDF state of a tuple). Let σ be a database state and let R be a pivot relation in M. The
RDF state of tuple p in R(σ), denoted M[p](σ), is defined as:
M[p](σ) = {(s, q, o, g) | (s, q, o) is a triple in Ψ [r/p](σ) where Ψ is a TR in M with pivot relation R, and g

is the named graph URI for pivot relation R}.

Note that, if p is a tuple in R(σ) such that R is not a pivot relation in any TR in M, then M[p](σ) = ∅.

Example 1. Consider the transformation rules for the MusicBrainz RDF view defined in Table IV. Also,
consider the relation Artist in Figure 2(a), which is the pivot relation of the TRs Ψ1, Ψ2, Ψ3, Ψ7, Ψ10, and
Ψ24. Thus, the RDF state of a tuple p in relation Artist is computed by applying the TRs Ψ1[r/p], Ψ2[r/p],
Ψ3[r/p], Ψ7[r/p], Ψ10[r/p], and Ψ24[r/p]. Considering the database state in Figure 3, the RDF state of tuple
a1 in Artist contains the following quads:

– (mbz:ga1 rdf:type mo:MusicArtist mbz:ga), by Ψ1[r/a1]
– (mbz:ga1 rdf:type mo:SoloMusicArtist mbz:ga), by Ψ2[r/a1]
– (mbz:ga1 foaf:made mbz:t2 mbz:ga), by Ψ7[r/a1]
– (mbz:ga1 foaf:name ”Kungs” mbz:ga), by Ψ10[r/a1]
– (mbz:ga1 dbo:genre mbz:q1 mbz:ga);

(mbz:ga1 dbo:genre mbz:q2 mbz:ga);
(mbz:ga1 dbo:genre mbz:q2 mbz:ga), by Ψ24[r/a1]

Note that, Ψ3[r/a1] produces no triple, while Ψ24[r/a1] produces duplicated triples. The triple (mbz:ga1
dbo:genre mbz:gq2) is generated twice by assigning different tuple variables in Ψ24.

Definition 3 (RDF state of a relation). Let σ be a database state of S and R be a relation in S. The
RDF state of R at state σ, denoted M[R](σ), is defined as:

M[R](σ) =
⋃

p is a tuple in R(σ)

M[p](σ)

Intuitively, the RDF state of R at state σ is computed by the materialization of the RDF state of all
tuples in R. Note that, if R is not a pivot relation in any TR in M, then M[R](σ) = ∅.

Definition 4 (Materialization of W). The materialization or state of W at state σ, denoted M(σ), is
defined as:

M(σ) =
⋃

p is a tuple in R(σ) and
R is a Pivot Relation of W

M[p](σ)

Intuitively, the RDF state of W at state σ is computed by the materialization of RDF states of all pivot
relation of W.

6 Formal Framework for Computing Correct Changesets for RDB2RDF Views

This Section presents the proposed framework for computing a correct changeset for the materialized RDB2RDF
view W= (V, S , M), when an update u occurs in the source relational database S .

6.1 Overview

An update u on a relation R is defined as two sets, D and I, of tuples of R. The update u indicates that the
tuples in D must be deleted and the tuples in I must be inserted into R. More precisely:

Definition 5 (updates, insertions, and deletions). An update on a relation R is a pair u=(D, I) such
that D and I are, possibly empty, sets of tuples of R. If I = ∅, the authors say that the update is a deletion,
and, if D=∅, they say that the update is an insertion.

The semantics of an update u = (D, I) is straightforward and is defined as follows:
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Definition 6 (semantics of an update). Let u = (D, I) be an update on R and σ0 be a database state.
Then, the execution of u on σ0 results in the database state σ1 which is equal to σ0 except that R(σ1) =
R(σ0)−D ∪ I. The authors also say that σ1 is the result of executing u on σ0 and that σ0 is the database
state before u and σ1 is the database state after u.

Note that updates are deterministic, in the sense that, given an initial state, an update always results in
the same state.

The diagram in Figure 4 describes the problem of computing a correct changeset for a materialized
RDB2RDF viewW, when an update u occurs in the source relational database S . In the diagram of Figure 4,
assume that:

Fig. 4. The problem of computing correct changeset for RDB2RDF View.

1. M is the set of mappings that materialize view W;
2. σ0 and σ1 are the states of S respectively before and after the update u; and
3. M(σ0) and M(σ1) are the materializations of W respectively at σ0 and σ1.

A correct changeset for W w.r.t. u, σ0 and σ1 is a pair 〈∆−(u), ∆+(u)〉, where ∆−(u) is a set of triples
removed from W and ∆+(u) is a set of triples added to W, that satisfies the following restriction (see
Figure 4):

M(σ1) = (M(σ0)−∆−(u)) ∪∆+(u) (1)

Putting this in words, the changeset 〈∆−(u), ∆+(u)〉 is correctly computed iff the new view state (M(σ0)−
∆−(u)) ∪∆+(u), computed with the help of the changeset, and the new view state M(σ1), obtained by the
rematerialization of the view, using the view mappings, are identical.

The computation of the changesets depends on the update u, the initial and final database states, σ0
and σ1, and the view mappings M. However, the notation for changesets indicates only the update u, to
avoid a cumbersome notation, since the database states may be considered as the context for u, and the view
mappings as fixed for the database in question.

The proposed approach to compute a correct changeset for an update u follows three main steps:

1. Identification of Relevant Relations. Identify the relations in S that are relevant to update u. A
relation is relevant to u if its RDF state is possibly affected by u.

2. Identification of Relevant Tuples. Identify the tuples, in the relevant relations, that are relevant to
the update. A tuple is relevant to an update u if its RDF state is possibly affected by the update.

3. Computation of Changesets. Compute the changeset 〈∆−(u), ∆+(u)〉. ∆−(u) contains the old RDF
states of the relevant tuples, which are removed from W, and ∆+(u) contains the new RDF states of the
relevant tuples, which are inserted into W. Therefore, only the RDF state of relevant tuples, identified
in Step 2. are rematerialized.

6.2 Identifying Relevant Relations

Definition 7 formally specifies, based on the TRs in M, the necessary and sufficient conditions for a relation
to be considered relevant to an update.
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Definition 7. Let R be a relation in S.

(i) Let Ψ be a TR in M. R is relevant to Ψ iff R appears in the body of Ψ or R is referenced by a foreign key
in the body of Ψ .

(ii) R is relevant to view W iff R is relevant to some TR in M.
(iii) Let u be an update on relation R. A relation R∗ in S is relevant to u iff R∗ is the pivot relation of a TR

Ψ in M and R is relevant to Ψ .

Example 2. Consider the transformation rules for the MusicBrainz RDF view defined in Table IV. The
relation Track is relevant to TRs Ψ5, Ψ7 and Ψ8 (Definition 7(i)). The relations Track, Artist and Medium
are the pivot relations of Ψ5, Ψ7 and Ψ8, respectively. Therefore, the relations Track, Artist and Medium are
relevant to updates on the relation Track (Definition 7(iii)).

In the rest of this section, R∗ denotes a pivot relation and r∗ denotes a pivot tuple variable. Proofs for all
lemmas and theorems have been omitted here due to space limitations. For the interested reader, they can
be found at https://doi.org/10.5281/zenodo.5850244.

Lemma 1. Let u be an update on a relation Rand let σ0 and σ1 be the database states before and after u,
respectively.

(i) If R is not relevant to W, then M(σ0) = M(σ1). Thus, an update on a relation that is not relevant to the
view does not affect the state of the view.

(ii) Let R∗ be a relation in S. If R∗ is not relevant to u, then M[R∗](σ0) = M[R∗](σ1). Thus, an update u
does not affect the RDF state of the relations which are not relevant to u.

Based on Lemma 1(i), the authors focused their attention only on the relations that are relevant to W
(Definition 7 (ii)). On the other hand, from Lemma 1(ii), an update on a relevant relation may affect only
the RDF states of the relations that are relevant to the update. Consider, for example, an update on relation
Track. This update may affect the RDF state of relations Track, Artist and Medium, which are relevant to
updates on Track (see Example 2). The RDF states of other relevant relations are not affected by updates
on Track.

6.3 Identifying Relevant Tuples

Definitions 8 and 9 formally define sufficient conditions to identify, based on the database state and the
view mappings, which tuples, in a relevant relation, are relevant to an update. The key idea of the proposed
approach is to rematerialize only the RDF state of the tuples that are relevant to the update, i.e., the tuples
whose RDF state might possibly be affected by the update.

Definition 8. Let:

– u=(D, I) be an update on R.
– σ0 and σ1 be the database states before and after u, respectively.
– Ψ be a TR in M, where R is relevant to Ψ , R∗ is the pivot relation of Ψ , r and r∗ are the tuple variables

for R and R∗ in Ψ , respectively.

(i) Let rold be a tuple in D.
P[R,Ψ ](rold) = {p | p is a tuple in R∗(σ0) and (Ψ [r∗/p, r/t]) (σ0)6= ∅) }.

(ii) Let rnew be a tuple in I.
P[R,Ψ ](rnew) = {p | p is a tuple in R∗(σ1) and (Ψ [r∗/p,r/t](σ1) 6= ∅) }.

(iii) A tuple p in R∗(σ0) ∪ R∗(σ1) is relevant to u w.r.t. Ψ iff p is in P[R,Ψ ](t) for some t in D ∪ I.

In Definition 8, given a tuple t in D ∪ I, P[R,Ψ ](t) returns all tuples in R∗(σ0) ∪ R∗(σ1) that are related
to t. Therefore, the RDF state of a tuple p in P[R,Ψ ](t) may be affected by the update u. This makes p
relevant to u.

Definition 9. Let u=(D, I) be an update on R and σ0 and σ1 be the database states before and after u,
respectively. A tuple p in σ0 ∪ σ1 is relevant to u iff:
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(i) p is relevant to u w.r.t a TR Ψ in M, or
(ii) p occurs in D ∪ I and R is a pivot relation of a TR in M.

Lemma 2. Let u=(D, I) be an update on R. Let R∗ be a relation relevant to u and let p be a tuple in R∗(σ0),
but not in D. If p is not relevant to u w.r.t any TR Ψ in M, then M[p](σ0) = M[p](σ1).

Example 3. Consider the transformation rules for the MusicBrainz RDF view defined in Table IV, and
the database state in Figure 3. Also, consider u an update which deletes tuple rold and inserts tuple rnew in
table Track, where:

– rold = 〈t1, m1, “This Girl”, c2〉
– rnew=〈t1, m1, “This Girl (feat. Cookin’ On 3 B.)”, c1〉

From TRs Ψ7 , Ψ8, you have that the relations Track, Artist and Medium are relevant to updates on table
Track (See Example 2).
From Definition 8 and TR Ψ7, you have that:

– P[Track, Ψ7](rnew)= {a1, a2}
– P[Track, Ψ7](rold)= {a2, a3}

Therefore, tuples a1 and a2 in relation Artist are related to rnew w.r.t. Ψ7, and tuples a2 and a3 in relation
Artist are related to rold w.r.t. Ψ7. Thus, tuples a1, a2 and a3 are relevant to update u w.r.t. Ψ7.
From Definition 8 and TR Ψ8, you have that:

– P[Track, Ψ8](rnew)= {m1}
– P[Track, Ψ8](rold)= {m1}

Therefore, tuple m1 in relation Medium is relevant to update u w.r.t Ψ8. From Definition 9(i), tuples a1, a2,
a3 and m1 are relevant to u. Since table Track is a pivot relation, from Definition 9(ii), rnew and rold are
also relevant to u.

6.4 Computing Changesets

Algorithm 1 shows a high-level description of the algorithm for computing changeset for updates on a relation
R. In the algorithm, Step 3 is processed in two phases. Phase 1 uses the database state before the update,
while Phase 2 uses the database state after the update. The algorithms for insertions and deletions are
similarly defined and are omitted here.

In the proposed strategy, database triggers are responsible for computing and publishing the correct
changeset for the RDB2RDF view to stay synchronized with the relational database. The proposed strategy
first identifies the relations in the source database that are relevant for the RDB2RDF view, that is, the
relations whose updates might possibly affect the state of the RDB2RDF view.

For each update operation u on a relevant relation (see Definition 7) two triggers are defined:

– BEFORE Trigger: fired immediately before the update to compute the set ∆−(u), using the view
mapping and the database state BEFORE the update.

– AFTER Trigger: fired immediately after the update to compute the set ∆+(u), using the view mapping
and the database state AFTER the update.

Figure 5 shows the templates of the triggers for the update operations on a relation R. Note that procedures
COMPUTE ∆−[R] and COMPUTE ∆+[R] can be generated at view definition time, based on the TRs
of the view, as discussed in a companion article.

In the following, the precise definition of the algorithm’s key concepts is presented, which allowed the
authors to provide rigorous arguments for the correctness of the algorithm. Based on Lemma 2, only the
RDF state of the tuples that are relevant to the update should be rematerialized. This result motivates the
following definition for the changesets that maintain the state of the view in the presence of an update u on
a tuple p.
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ALGORITHM 1: Algorithm for computing changeset for updates on a relation R

1

Input:
u = (D, I) − an update on R;
σ0 and σ1 − the states of the database respectively before and after the update u;

Output:
∆− and ∆+

2

3 if R is relevant to the view W (Definition 7; (ii)) then
4

5 Phase 1: Before the update do:

6 1.1 Compute P0, the set of tuples in σ0 that are relevant to u (Definition 9)

7 1.2 Compute ∆−:=
⋃

p∈(P0)

M[p];

8 // ∆− contains the union of the RDF states of tuples in P0 (Definition 10)

9

10 Phase 2: After the update do:

11 2.1 Compute P1, the set of tuples in σ1 that are relevant to u (Definition 9)

12 2.2 Compute ∆+:=
⋃

p∈(P1)

M[p];

13 // ∆+ contains the union of the RDF states of tuples in P1 (Definition 10)

14 return (∆+,∆−);

BEFORE{update, insert, delete} ON R
BEGIN
∆−:=COMPUTE ∆−[R](D, I),where

D is the set of deleted tuples and
I is the set of inserted tuples;

ADD ∆− to changeset file of W
END

(a)

AFTER{update, insert, delete} ON R
BEGIN
∆+:=COMPUTE ∆+[R](D, I),where

D is the set of deleted tuples and
I is the set of inserted tuples;

ADD ∆+ to changeset file of W
END

(b)

Fig. 5. Triggers templates for updates on R.
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Fig. 6. Database State after the update u.

Definition 10 (Changeset for update u). Let u=(D, I) be an update on R. Let P0 be the set of tuples in
σ0 that are relevant to u (Definition 9). Let P1 be the set of tuples in σ1 that are relevant to u (Definition 9).
Then,

– ∆−(u) =
⋃

p ∈ P0

M[p](σ0)

– ∆+(u) =
⋃

p ∈ P1

M[p](σ1)

As already pointed out in the introduction, changesets depend on the update u, the initial and final
database states, σ0 and σ1, and the view mappings M. However, the notation for changesets indicate only
the update u, to avoid a cumbersome expression, since one can consider the database states as the context
for u, and the view mappings as fixed for the database and the view in question.

In Definition 10, the set ∆−(u) contains the old RDF state of the tuples in P0, and the set ∆+(u) contains
the new RDF state of the tuples in P1. In the following, Theorem 1 shows that the new state of the view is
correctly computed using ∆−(u) and ∆+(u). So, 〈∆−(u), ∆+(u)〉 is a correct changeset for W w.r.t. update
u.

A third auxiliary lemma is needed to prove the central result of the article, which is shown as follows.

Lemma 3. Let σ be database state and, for i=1,2, let Ti be sets of tuples in pivot relations of an RDB2RDF
view. Define Qi = {x / x is a quad in M[p](σ), where p is a tuple in Ti}. If T1 and T2 are disjoint, then
Q1 and Q2 are also disjoint.

Theorem 1. Let:

– u=(D, I) be an update on R
– σ0 and σ1 be the database states before and after u
– P0, P1, ∆−(u) and ∆+(u) be as in Definition 10

Then, M(σ1) = (M(σ0) − ∆−(u)) ∪ ∆+(u)

Example 4. To illustrate this strategy, consider the update u as in Example 2, and P0 and P1 is in Defini-
tion 10. Figure 6 shows the new state of database S after the update u. From Example 3, you have:

P0 = {a1 , a2 , a3 ,m1 , rold} and P1 = {a1 , a2 , a3 ,m1 , rnew} (2)

Figure 7 shows the set ∆−(u), which contains the old RDF states of the tuples in P0. Figure 8 shows the
set ∆+(u), which contains the new RDF states of the tuples in P1.
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{(mbz:t1 rdf:type mo:track mbz:gt);
(mbz:t1 dc:title “This Girl” mbz:gt);
(mbz:ga2 rdf:type mo:MusicArtist mbz:ga);
(mbz:ga2 foaf:name “Cookin’s on 3 B.” mbz:ga);
(mbz:ga2 foaf:made mbz:t1 mbz:ga);
(mbz:ga2 dbo:genre mbz:q1 mbz:ga);
(mbz:ga2 dbo:genre mbz:q2 mbz:ga);
(mbz:ga2 rdf:type mo:MusicGroup mbz:ga);
(mbz:ga3 rdf:type mo:MusicArtist mbz:ga);
(mbz:ga3 foaf:name “Kylie Auldist” mbz:ga);
(mbz:ga3 foaf:made mbz:t1 mbz:ga);
(mbz:ga3 rdf:type mo:SoloMusicArtist mbz:ga);
(mbz:m1 rdf:type mo:Record mbz:gm);
(mbz:m1 mo:track count 12 mbz:gm);
(mbz:m1 mo:track mbz:t1 mbz:gm);
(mbz:m1 mo:track mbz:t2 mbz:gm);
(mbz:ga1 rdf:type mo:MusicArtist mbz:ga);
(mbz:ga1 foaf:name “Kungs” mbz:ga);
(mbz:ga1 foaf:made mbz:t2 mbz:ga) ;
(mbz:ga1 dbo:genre mbz:q1 mbz:ga);
(mbz:ga1 dbo:genre mbz:q2 mbz:ga);
(mbz:ga1 rdf:type mo:SoloMusicArtist mbz:ga) }

Fig. 7. ∆−(u) for update u in example 4.

(mbz:t1 rdf:type mo:track mbz:gt);
(mbz:t1 dc:title “ThisGirl(feat. Cookin’On 3B.)” mbz:gt);
{(mbz:ga2 rdf:type mo:MusicArtist mbz:ga);
(mbz:ga2 foaf:name “Cookin’s on 3 B.” mbz:ga);
(mbz:ga2 foaf:made mbz:t1 mbz:ga);
(mbz:ga2 dbo:genre mbz:q1 mbz:ga);
(mbz:ga2 dbo:genre mbz:q2 mbz:ga);
(mbz:ga2 rdf:type mo:MusicGroup mbz:ga);
(mbz:ga3 rdf:type mo:MusicArtist mbz:ga);
(mbz:ga3 foaf:name “Kylie Auldist” mbz:ga);
(mbz:ga3 rdf:type mo:SoloMusicArtist mbz:ga);
(mbz:m1 rdf:type mo:Record mbz:gm);
(mbz:m1 mo:track count 12 mbz:gm);
(mbz:m1 mo:track mbz:t1 mbz:gm);
(mbz:m1 mo:track mbz:t2 mbz:gm);
(mbz:ga1 rdf:type mo:MusicArtist mbz:ga);
(mbz:ga1 foaf:name “Kungs” mbz:ga);
(mbz:ga1 foaf:made mbz:t1 mbz:ga);
(mbz:ga1 foaf:made mbz:t2 mbz:ga) ;
(mbz:ga1 dbo:genre mbz:q1 mbz:ga);
(mbz:ga1 dbo:genre mbz:q2 mbz:ga);
(mbz:ga1 rdf:type mo:SoloMusicArtist mbz:ga) }

Fig. 8. ∆+(u) for update u in example 4.
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Fig. 9. LinkedBrainz Live tool.

7 Implementation and Experiments

In order to test the proposed strategy, the LinkedBrainz Live tool (LBL tool) was implemented.The LBL tool
propagates updates over the MusicBrainz relational database (MBD database) to an external materialized
RDF view, called LinkedMusicBrainz view (LMB view).

Figure 9 shows the main components of the LBL tool, which are described in what follows.

– The MBD database is a local replica of the MusicBrainz database. The MBD database scheme
contains 411 relations, and it includes information about artists, release groups, releases, recordings,
works, and labels. The decompressed database dump has about 13 GB and was stored in PostgreSQL
version 9.4.

– The Music Ontology vocabulary (MO, Last accessed in Feb/2022) is used for publishing the LMB view.
The mapping for translating MBD data into the Music Ontology vocabulary is shown in
https://doi.org/10.5281/zenodo.6465759.

– The Triggers are responsible for computing and publishing the changesets for updates on relevant re-
lation of the MBD database. The MBD database scheme has 43 relations that are relevant to the LMB
view. The triggers required for the relevant relations are presented in
https://doi.org/10.5281/zenodo.6465759.

– The LBL update extractor extracts updates from the replication file provided by MusicBrainz, which
contains a sequential list of the update instructions processed by the MusicBrainz database. When
there is a new replication file, the updates should be extracted and then executed against the local
replica of the MusicBrainz database.

– The Synchronization tool enables the LMB view to stay synchronized with the MBD database. It
simply downloads the changeset files sequentially, creates the appropriate INSERT/DELETE statement
and executes it against the LMB view triplestore.

The experiments measure the time spent to compute the changeset for 109 replication files published by
MusicBrainz. A total number of 556,872 updates were processed, 332,172 of which were relevant to the LMB
view. Table V shows a summary of the processed replication files. On average, a replication file contained
5,066 updates, 3,202 of which were relevant to LMB view, and the average time to compute the changeset
was 3,574 seconds. The biggest replication file contained 10,455 updates, 7,034 of which were relevant to
LMB view, and the time to compute the changeset was 6,449 seconds. The smallest replication file had 1,230
updates, 708 of which were relevant to LMB view, and the time to compute the changeset was 445 seconds.

The experiments were divided into three parts. The first part measures the overhead that the triggers
cause in the performance of the data source updates. The second part compares the proposed incremental
maintenance strategy for RDB2RDF views against the full and partial re-materialization of RDB2RDF views.
Finally, the third part compares the proposed strategy against the mechanism for incremental maintenance
of relational view supported by the Oracle Database.
Part I - Overhead caused by Computing Changesets using Triggers

This experiment measures the average time spent by the triggers to compute the changesets (∆− and
∆+) for updates on relevant relations of the LMB view. Table VI summarizes the average time required to
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Table V. Summary of replication files(109 replication files)

compute the changesets for updates on the relevant relations Artist, Medium, Recording, Track, and Credit,
which are among the most updated relations in the MusicBrainz database.

For each relevant relation (RR), Table VI shows: the average number of updates by replication files; the
average number of relevant tuples by update on RR; and the average time (in milliseconds) to compute ∆−

and ∆+ per update on RR. The time was computed separately for steps 1 and 2 of the procedures COM-
PUTE ∆−[R] and COMPUTE ∆+[R]. The experiments demonstrated that the runtime for computing the
changeset is negligible because the number of tuples that are relevant to an update is relatively small. For
example, in the worst case in Table VI, the average time to compute ∆− and ∆+ was less than 1.2 seconds
in the relation Credit. These results indicate that the proposed strategy can support live synchronization for
large RDB2RDF views.

Table VI. Changeset Computation Performance for Updates on some Relevant Relations

Part II - Evaluation of relevant tuples re-materialization against full and partial re-materiali-
zation approaches

As part of the evaluation, the proposed incremental strategy was compared with full and partial remate-
rializations, for updates on relevant relations of the LMB view. Figure 10 shows the comparison for updates
on the relevant relations Artist, Medium, Recording and Track. Figure 10 shows:

– (1) The average time spent to compute ∆− and ∆+ (see Table VI) considering only the tuples that are
relevant to the update.

– (2) The time spent for materialization of the relations that are relevant to the update (Partial Rema-
terialization). The time is computed by the sum of the time for materializing each relevant relation.
Table VII shows the size (number of tuples), the time (in milliseconds) spent to rematerialize some of
the relevant relations.

– (3) The time spent to rematerialize the view (Full Rematerialization). The time is computed by the sum
of the time for materializing all pivot relations.

Table VII. Materialization time for some of the Relevant Relations

The average time to rematerialize the LMB view was 206 minutes (12,360,871 milliseconds). Note that,
for updates on relations in Figure 10 (Track, Artist, Recording and Medium), the difference between full and
partial strategies is not very significant. That is because, the updates on those relations are relevant to other
relations, and the time spent to materialize them is almost 73% of the time spent to materialize the LMB
view.

As Figure 10 clearly shows, the time to compute the changeset with the proposed approach is almost
three orders of magnitude smaller than partial rematerialization, and three orders of magnitude smaller
than full rematerialization strategy. Thus, one may conclude that, in a situation where the RDB2RDF view
should be frequently updated, the incremental strategy far outperforms full rematerialization, and also partial
rematerialization. The results also show that full rematerialization and partial rematerialization are not a
solution for live synchronization of large RDB2RDF views.
Part III - Evaluation of our strategy against incremental maintenance of relational views

This experiment compares the proposed incremental maintenance strategy with the mechanism for in-
cremental maintenance of relational view supported by the Oracle Database. It was not possible to use the
PostgreSQL database because it has no support for incremental view maintenance.

The mechanism for incremental maintenance (incremental refresh) of relational view implemented by
Oracle does not support views with duplicate (Griffin and Libkin, 1995). To create a materialized view in
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Fig. 10. Comparison of the three rematerialization approaches.

Oracle, and use the incremental refresh mechanism, the select clause should include the key (rowid) for all
base relations. It also requires the creation of logs table to keep track of updates on the base relation. The
changesets are computed using the states of the materialized view, log tables and base relations.

R2RML
Mappings

Relational
Schema

Relational View
Schemas

SQL
Mappings

RDB-RDF View
Ontology

Fig. 11. Three-Level Schema.
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Fig. 12. Relational View Schema.

For the experiments, a set of relational views were defined in such a way that the mappings from relational
view schemas to RDF view ontology were direct mappings (Group, 2012). The proposal was to break the
definition of the RDB to RDF mappings in two stage, as depicted in Figure 11. The SQL mappings, from
relation schema to relational view schema, absorb the complexity of the mappings, so that the mappings
from the relational views to RDB RDF views are direct mappings. Authors in (Anonymous, 2014) presents a
strategy to automatically generate the relational view schema and direct R2RML mappings based on a set of
transformation rules. Figure 12 depicted the schema for some relational view used in our experiments. The
SQL definition for the relational views in Figure 12 are shown in https://doi.org/10.5281/zenodo.6465759.

Notice that an update on a base relation may affect several relational views. Table VIII shows the list of
relational views that are relevant to relations Artist, Medium, Recording and Track. Updates on these tables

Page 20 of 52International Journal of Web Information Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



International Journal of W
eb Inform

ation System
s

Publication and Maintenance of RDB2RDF Views Externally Materialized in Enterprise Knowledge Graphs 21

should be propagated to their relevant views. Therefore, the refresh time for an update on a base relation is
the sum of the refresh time for all the relational views that are relevant to that base relation.

Table VIII. List of Relevant Views to Relevant Relations in Artist, Medium, Recording and Track.

The experiments adopt the same updates on Artist, Medium, Recording and Track relations that were
used in the first part of the experiment. The updates are applied to the Oracle database, and then the total
time to refresh all relevant views is computed.

Table IX shows the results for 5 (five) on each relation. The updates were selected considering the runtime
for computing the changeset obtained in the first part of the experiment. Updates 1 and 2 are the updates
with the smallest runtime, update 3 has an average runtime, and updates 4 and 5 have the highest runtime.
Figure 13 shows the comparison of the results for each relation.

Table IX. Time for Changeset Computation and Incremental Refresh.

(a) Updates on relation Artist (b) Updates on relation Medium (c) Updates on relation Recoding

(d) Updates on relation Track

Fig. 13. Changeset Computation x Incremental Refresh.

Figure 14 shows the comparison considering the average time for both approaches. Notice that the average
time to compute the changeset is almost two orders of magnitude smaller than the average refresh time. The
experiments also demonstrated that the refresh time increases when the views are very large. Thus, the
incremental refresh mechanism is not a good solution for live synchronization of large relational views.

Another limitation of the Oracle mechanism is that it requires access to the view for incremental refresh,
which can be very slow when the view is maintained externally, because accessing a remote data source may
be too slow. One may conclude that the proposed strategy is much simpler, more efficient, and less restrictive,
since the views can have duplicated tuples and are maintained externally.
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Fig. 14. Comparison of Changeset Computation for RDB2RDF view and Incremental Refresh.

8 Conclusions and Final Remarks

This article presented a formal framework for the construction and incremental maintenance of RDB2RDF
views, which are externally materialized in an Enterprise Knowledge Graph. In the proposed framework
the server computes and publishes changesets, which indicate the difference between two states of the view.
The EKG system can then download the changesets and synchronize the externally materialized view. The
changesets are computed based solely on the update and the source database state, and no access to the
content of the view is required.

In the formal framework, changesets are computed in three steps: identification of relevant relations,
identification of relevant tuples, and computation of changesets. The formal framework was based on three
key ideas. First, it assumed that the RDB2RDF views are object-preserving, that is, the views preserve the
base entities of the source database, rather than creating new entities from the existing ones (Motschnig-
Pitrik, 2000). This assumption makes it possible to precisely identify the specific tuples that are relevant to
a data source update w.r.t. an RDB2RDF view. Second, the formal framework included a rule language to
specify object preserving-views mappings. Third, the proposed framework assumes that the content of an
RDB2RD view is stored in an RDF dataset that contains a set of named graphs, used to describe the context
in which the triples were produced. The central result of the article, Theorem 1, showed that changesets
computed according to the formal framework correctly maintain the RDB2RDF views. The main idea that
differentiates the proposed approach from previous work on incremental view maintenance is to explore the
object-preserving property of typical RDB2RDF views, so that the solution can also be able to deal with
views with duplicates.

In order to test the proposed strategy, the LinkedBrainz Live tool (LBL tool) was implemented. Very
briefly, the LBL tool propagates updates over the MusicBrainz database (MBD database) to the Linked-
MusicBrainz view (LMB view). The LMB view is intended to help MusicBrainz publish its database
as Linked Data. Based on the tool, experiments were conducted in two parts. The first part measured the
overhead that the triggers cause in the performance of the data source updates. The second part compared our
incremental maintenance strategy against the full and partial re-materialization of RDB2RDF views. The
experiments indicated that the proposed strategy supports live synchronization of large RDB2RDF views
and that the time taken to compute the changesets with the proposed approach was almost three orders of
magnitude smaller than partial and full rematerialization.
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Built-in predicate Intuitive definition

nonNull(v) nonNull(v) holds i↵ value v is not null

RDFLiteral(u, A, R, v) Given a value u, an attribute A of R, a relation name R,
and a literal v, RDFLiteral(u, A, R, v) holds i↵ v is the
literal representation of u, given the type of A in R

F(r, s) Given a tuple r of R and a tuple s of S, F(r, s) holds i↵ r
where F is a foreign key of the is related to s by a foreign key F
form F(R:L, S:K)

hasURI (P, A, s) Given a tuple r of R, hasURI (P, A, s) holds i↵ s is the
where P is the namespace URI obtained by concatenating the namespace prefix P
prefix and A is a list of and the attribute values a1, . . . , an where A is the list
attributes of R (in Prolog notation) [a1, . . . , an]. To further simply mat-

ters, we admit denoting a list with a single element, “[a]”,
simply as “a”.

Table I: Examples of built-in predicates
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TR Transformation Rules

CTR  : C(x)  R(r), B[r, x], where
-  is the name of the CTR.
- C is a class in V and x is a scalar variable whose value is a URI.
- R is relation in S and r is tuple variable; R is called the pivot relation and
r the pivot tuple variable of the rule.

- B[r, x] is a list of literals.

DTR  : P(x, y)  R(r), B[r, x], H[r, y], where
-  is the name of the DTR.
- P is a datatype property in V with domain D.
- “Rn(r), B[r, x]” is the right-hand side for the CTR that matches class D

with pivot relation R.
- H[r, y] is a list of literals which define a predicate H that relates a tuple r
and data values in y.

OTR  : P(x, y)  RD(r1), BD[r1, x], H[r1, r2],RG(r2), BG[r2, y], where
-  is the name of the OTR.
- P is an object property in V with domain D and range G.
- “RD(r1), BD[r1, x]” is the RHS of the CTR  D that matches class D with

pivot relation RD.
- “RG(r2), BG[r2, y]” is the RHS of the CTR  G that matches class G with
pivot relation RG.

- H[r1, r2] is a list of literals which define a predicate H that relates tuples in
RD with tuples in RG.

Table II: Transformation Rules

3
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TR Transformation Rule Pattern

CTR  :C(s)  R(r), hasURI (P , A, s), �(r), where
- R is a relation name in S and r a is tuple variable associated with R,
- A is a list of attributes of a primary key of R,
- � is an optional selection over R, and
- P is a namespace prefix

OTR  :P(s, o)  RD(r), BD[r, s],F1(r, r1), . . . , Fn(rn�1, rn), RG(rn), BG[rn, o],
where:
- P is an object property of V ,
- R is a relation name in S and r is a tuple variable associated with R,
- [F1, . . . , Fn] is a path from R to relation Rn where F1 relates R and R1, and
Fi relates Ri�1 and Ri, and ri is a tuple variable associated with Ri, 1< in

DTR  :P(s, v)  R(r), B[r, s], F1(r, r1), . . . , Fn(rn�1, rn), nonNull(rn.A1), . . . ,
nonNull(rn.Ak), RDFLiteral(rn.A1, ”A1”, ”Rn”, v1), . . . ,
RDFLiteral(rn.Ak, ”Ak”, ”Rn”, vk), T ([v1, . . . , vk], v), where

- P is a datatype property of V ,
- R is a relation name in S and r a is tuple variable associated with R,
- [F1, . . . , Fn] is a path from R to relation Rn where F1 relates R and R1, and
Fi relates Ri�1 and Ri, and ri is a tuple variable associated with Ri, 1< in
- A1, . . . , Ak are the attributes of Rn. If there is no path, then A1, . . . , Ak are
attributes of R
- T is an optional function that transforms values of attributes A1, . . . , Ak to
values of property P

Table III: Transformation Rule Patterns

4
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TR Transformation Rules

 1 mo:MusicArtist(s)  Artist(r), hasURI (mbz:,r.gid, s)

 2 mo:SoloMusicArtist(s)  Artist(r), hasURI (mbz:,r.gid , s), (r.type = 1)

 3 mo:MusicGroup(s)  Artist(r), hasURI (mbz:, r.gid, s), (r.type = 2)

 4 mo:Record(s)  Medium(r), hasURI (mbz:, r.mid, s)

 5 mo:Track(s)  Track(r), hasURI (mbz:, r.tid, s)

 7 foaf:made(s, g)  Artist(r), hasURI (mbz:, r. gid, s), fk1 (r, r1), fk2 (r1, r2),
fk3 (r2, r3), Track(r3), hasURI (mbz:, r3.tid, g)

 8 mo:track (s, g)  Medium(r), hasURI (mbz:, r.mid, s), fk4 (r, f), Track(f),
hasURI (mbz:, f .tid, g), hasURI (mbz:, f .tid, g)

 10 foaf:name(s, v)  Artist(r), hasURI (mbz:, r.gid, s), nonNull(r.name),
RDFLiteral(r.name, ”name”, ”Artist”, v)

 11 mo:track count(s, v) Medium(r),hasURI (mbz:, r. mid, s),nonNull(r.track count),
RDFLiteral(r.track count, ”track count”, ”Medium”, v)

 16 dbo:Genre(s)  Tag(r), hasURI (mbz:, r.gid, s)

 20 dc:title(s, v)  Tag(r), hasURI (mbz:, r.gid, s), nonNull(r.name),
RDFLiteral(r.name, ”title”, ”Tag”, v)

 24 dbo:genre(s, g)  Artist(r), hasURI (mbz:, r. gid, s), fk1 (r, r1), fk2 (r1, r2),
fk7 (r2, r3), fk9 (r3, r4), fk10 (r4, r5),Tag(r5),
hasURI (mbz:, r5.qid, g)

Table IV: Examples of Transformation Rules
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Replication No No Relevant Time to Compute
File (size) updates Updates Changeset(ms)
Average 5,066 3,022 3,574,000
Biggest 10,455 7,034 6,449,000
Smallest 1,230 708 445,000

Table V: Summary of replication files(109 replication files)
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Relevant Avg No of Rele- Avg No of COMPUTE ��[R] (ms) COMPUTE �+[R] (ms)

Relation vant Updates Tuples by Step 1 Step 2 Step 1 Step 2

by Rep. Files Updates

Artist 41.49 5.87 439 510 6 62
Medium 324.56 18.52 134 33 4 12
Recording 644.50 4.99 156 691 5 194
Track 585.28 4.87 145 601 6 211
Credit 785.06 10.49 151 813 4 224

Table VI: Changeset Computation Performance for Updates on some Relevant Relations

7

Page 31 of 52 International Journal of Web Information Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



International Journal of W
eb Inform

ation System
s

Relevant Relation No of Tuple (k) Materialization Time (ms)
Artist 1,962 2,697,630
Medium 3,587 480,252
Recording 26,759 961,251
Track 37,041 4,980,582
Credit 2,278 * not a pivot relation

Table VII: Materialization time for some of the Relevant Relations
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Relevant Relation (RR) Relevant views No of Relevant views
MusicArtist, SoloMusicArtist,
MusicGroup, MusicArtisMade,
MusicArtistGender,
MusicArtistBaseNear,
MusicArtistIsPrimaryTopicOf,
MusicArtistAccount,

Artist MusicArtistMemberOf, 14
MusicArtistSameAs,
MusicArtistSeeAlso,
MusicArtistComment,
MusicArtisHasTag,
MusicArtistComposer
Record, RecordTrack,

Medium RecordMediaType, 4
ReleaseRecord
Signal, SignalComment,

Recording MusicArtisMade, 4
TrackPublicationOf
Track, TrackDuration,

Track TrackPublicationOf, 4
MusicArtisMade

Table VIII: List of Relevant Views to Relevant Relations in Artist, Medium, Recording
and Track.
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Update Artist Medium Recording Track
(C) (R) (C) (R) (C) (R) (C) (R)

1 520 604228 130 117946 341 533080 150 579260
2 661 618189 151 132401 371 498770 180 713914
3 1211 510184 151 154775 430 609917 201 705353
4 1391 725992 420 136459 1401 480010 640 619580
5 1600 517710 971 101685 3320 486462 2800 704016

Table IX: Time for Changeset Computation and Incremental Refresh.
Legend: (C) Changeset (R) Refresh
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Fig. 1. Incremental Maintenance of Externally Materialized RDB2RDF View. 

144x58mm (96 x 96 DPI) 

Page 35 of 52 International Journal of Web Information Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



International Journal of W
eb Inform

ation System
s

Artist

- aid
- gid
-

gid
name
- type

Credit

- cid
- name

ArtistCredit

- cid
- pospospospos
-

pos
aid

rtistCredit

sss

fk1
Release

- rrridid
- gid
-

gid
name
- cid

Medium

- mid
- rid
- track_count

Track

- tid
- mid
- name
- cid

- mi
- rid
- tra

Track

eename
ddcid

fk4

fk3fk2

fk5

Recording

- ssidid
- gid
-

gid
name
- cid
- length

ReleaseGroup

- pididp
-

p
gid
-

gid
name
- cid

fk2fk2 fk

eename
- dcid

Release

fk6

fk7

fk8

RecordingTag

- ssidid
- qid

Tag

- qidid
- name

gTag

-

fk9

- qqqidq
name
-

fk10

Page 36 of 52International Journal of Web Information Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



International Journal of W
eb Inform

ation System
s

mo:record

mo:MusicArtist

+ foaf:name

mo:Release

+ dc:title

mo:Track

+ dc:title

mo:Record

+mo:track_count

ist
mo:Tr

foaf:made

kTrackTr

mo:track

mo:MusicGroup mo:SoloMusicArtist

mo:SignalGroup

+ dc:title

foaf:made

mo:Signal

+ dc:title
+ mo:duration

pup

foaf:made

fo

+

e
foaf:made

dbo:Genre

+ dc:titletitle

+

bo: eGenre

dbo:genre

Page 37 of 52International Journal of Web Information Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



International Journal of Web Information Systems

mid

m1

track_count

12

c3 1 a1

cid pos

c1 1

c1 2

c3 Kungs

cid name

c1 Kungs vs. Cookin' on 3 B.

t2 m1 Don't You Know c3

tid name

t1 This Girl

c2 1

c2 Cookin' on 3 B. feat. Kylie Auldist

Track

Credit

Medium

Artist ArtistCredit

c2 2

aid

a1

a2

a2

a3

cid

c2

mid

m1

rid

r1

cid

c3

rid name

r1 Layers

Release

gid

gr1

aid name

a1 Kungs

a2 Cookin' on 3 B.

type

1

2

gid

ga1

ga2

a3 ga3 Kylie Auldist 1

Recording

ReleaseGroup

cid

c3

pid name

p1 Layers

gid

gp1

qid name

q1 pop

q2 dance

Tag

s1 q2

s2 q2

sid

s1

RecordingTag

qid

q1
length

3:15

3:04s2 gs2
Don't You
Know

c3

sid name

s1

Don't You

This Girl

cid

c1

gid

gs1

Page 38 of 52International Journal of Web Information Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



International Journal of W
eb Inform

ation System
s

Publication and Maintenance of RDB2RDF Views Externally Materialized in Enterprise Knowledge Graphs 15

ALGORITHM 1: Algorithm for computing changeset for updates on a relation R

1

Input:

u = (D, I) � an update on R;
�0 and �1 � the states of the database respectively before and after the update u;

Output:

�� and �+

2

3 if R is relevant to the view W (Definition 7; (ii)) then

4

5 Phase 1: Before the update do:

6 1.1 Compute P0, the set of tuples in �0 that are relevant to u (Definition 9)

7 1.2 Compute ��:=
S

p2(P0)

M[p];

8 // �� contains the union of the RDF states of tuples in P0 (Definition 10)
9

10 Phase 2: After the update do:

11 2.1 Compute P1, the set of tuples in �1 that are relevant to u (Definition 9)

12 2.2 Compute �+:=
S

p2(P1)

M[p];

13 // �+ contains the union of the RDF states of tuples in P1 (Definition 10)

14 return (�+,��);

BEFORE{update, insert, delete} ON R
BEGIN

��:=COMPUTE ��[R](D, I),where
D is the set of deleted tuples and
I is the set of inserted tuples;

ADD �� to changeset file of W
END

(a)

AFTER{update, insert, delete} ON R
BEGIN

�+:=COMPUTE �+[R](D, I),where
D is the set of deleted tuples and
I is the set of inserted tuples;

ADD �+ to changeset file of W
END

(b)

Fig. 5. Triggers templates for updates on R.
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mid

m1

track_count

12

c3 1 a1

cid pos

c1 1

c1 2

c3 Kungs

cid name

c1 Kungs vs. Cookin' on 3 B.

c2 1

c2 Cookin' on 3 B. feat. Kylie Auldist

Track

Credit

Medium

Artist ArtistCredit

c2 2

aid

a1

a2

a2

a3

rid

r1

cid

c3

rid name

r1 Layers

Release

gid

gr1

aid name

a1 Kungs

a2 Cookin' on 3 B.

type

1

2

gid

ga1

ga2

a3 ga3 Kylie Auldist 1

Recording

ReleaseGroup

cid

c3

pid name

p1 Layers

gid

gp1

qid name

q1 pop

q2 dance

Tag

s1 q2

s2 q2

sid

s1

RecordingTag

qid

q1
length

3:15

3:04s2 gs2
Don't You
Know

c3

sid name

s1

Don't You

This Girl

cid

c1

gid

gs1

t2 m1 Don't You Know c3

tid name

t1
This Girl(feat.
Cookin' On 3 B.)

cid

c1

mid

m1
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{(mbz:t1 rdf:type mo:track mbz:gt);
(mbz:t1 dc:title “This Girl” mbz:gt);
(mbz:ga2 rdf:type mo:MusicArtist mbz:ga);
(mbz:ga2 foaf:name “Cookin’s on 3 B.” mbz:ga);
(mbz:ga2 foaf:made mbz:t1 mbz:ga);
(mbz:ga2 dbo:genre mbz:q1 mbz:ga);
(mbz:ga2 dbo:genre mbz:q2 mbz:ga);
(mbz:ga2 rdf:type mo:MusicGroup mbz:ga);
(mbz:ga3 rdf:type mo:MusicArtist mbz:ga);
(mbz:ga3 foaf:name “Kylie Auldist” mbz:ga);
(mbz:ga3 foaf:made mbz:t1 mbz:ga);
(mbz:ga3 rdf:type mo:SoloMusicArtist mbz:ga);
(mbz:m1 rdf:type mo:Record mbz:gm);
(mbz:m1 mo:track count 12 mbz:gm);
(mbz:m1 mo:track mbz:t1 mbz:gm);
(mbz:m1 mo:track mbz:t2 mbz:gm);
(mbz:ga1 rdf:type mo:MusicArtist mbz:ga);
(mbz:ga1 foaf:name “Kungs” mbz:ga);
(mbz:ga1 foaf:made mbz:t2 mbz:ga) ;
(mbz:ga1 dbo:genre mbz:q1 mbz:ga);
(mbz:ga1 dbo:genre mbz:q2 mbz:ga);
(mbz:ga1 rdf:type mo:SoloMusicArtist mbz:ga) }

Fig. 7. ��(u) for update u in example 4.
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(mbz:t1 rdf:type mo:track mbz:gt);
(mbz:t1 dc:title “ThisGirl(feat. Cookin’On 3B.)” mbz:gt);
{(mbz:ga2 rdf:type mo:MusicArtist mbz:ga);
(mbz:ga2 foaf:name “Cookin’s on 3 B.” mbz:ga);
(mbz:ga2 foaf:made mbz:t1 mbz:ga);
(mbz:ga2 dbo:genre mbz:q1 mbz:ga);
(mbz:ga2 dbo:genre mbz:q2 mbz:ga);
(mbz:ga2 rdf:type mo:MusicGroup mbz:ga);
(mbz:ga3 rdf:type mo:MusicArtist mbz:ga);
(mbz:ga3 foaf:name “Kylie Auldist” mbz:ga);
(mbz:ga3 rdf:type mo:SoloMusicArtist mbz:ga);
(mbz:m1 rdf:type mo:Record mbz:gm);
(mbz:m1 mo:track count 12 mbz:gm);
(mbz:m1 mo:track mbz:t1 mbz:gm);
(mbz:m1 mo:track mbz:t2 mbz:gm);
(mbz:ga1 rdf:type mo:MusicArtist mbz:ga);
(mbz:ga1 foaf:name “Kungs” mbz:ga);
(mbz:ga1 foaf:made mbz:t1 mbz:ga);
(mbz:ga1 foaf:made mbz:t2 mbz:ga) ;
(mbz:ga1 dbo:genre mbz:q1 mbz:ga);
(mbz:ga1 dbo:genre mbz:q2 mbz:ga);
(mbz:ga1 rdf:type mo:SoloMusicArtist mbz:ga) }

Fig. 8. �+(u) for update u in example 4.
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Fig. 9. LinkedBrainz Live tool. 
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Fig. 10. Comparison of the three rematerialization approaches. 
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Fig. 11. Three-Level Schema. 
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Fig. 12. Relational View Schema. 
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Fig. 13. (a) Updates on relation Artist. 
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Fig. 13. (b) Updates on relation Medium. 
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Fig. 13. (c) Updates on relation Recoding. 
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Fig. 13. (d) Updates on relation Track. 
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Fig. 14. Comparison of Changeset Computation for RDB2RDF view and Incremental Refresh. 
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