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Motivation

Wireless Sensor Networks (WSNs) - a network composed of
nodes using a wireless medium in Time Division Multiple
Access (TDMA).

No centralized infrastructure - implies the need for a
decentralized algorithm to perform desynchronization of
transmissions.

Applicable to surveillance - a group of vigilant robots that
want to periodically visit sites to be monitored.
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Traditional Solution

A WSN can run Time-Synchronized Channel Hoping (TSCH)
protocol established in IEEE 802.15.4e-2012 standard [1].

Solution is inspired in biological agents modeled as
Pulse-Coupled Oscillators (PCOs). In a sense similar to how
fireflies adjust their firing rate depending on other fireflies.

In [2], the desynchronization is performed using the Nesterov
method applied to an optimization formulation.
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Intuition behind PCOs

Assume an internal clock of each node that broadcast a pulse
whenever its phase θi reaches 1, i.e., every T time units.

Each nodes in the ring network adjusts its phase offset φi
attempting to desynchronize from the others.

Phase offsets are changed in a consensus-like [3] iteration
from the offsets of the two neighbors.

θi(t) =
t
T + φi(t) mod 1,
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Optimization formulation

A desynchronization state is a minimizer of the function:

g(φ) :=
1

2
‖Dφ− 1n

n
+ en‖22

Matrix D represents the network. Example for 4 nodes:

D =


−1 1 0 0
0 −1 1 0
0 0 −1 1
1 0 0 −1


Nesterov method becomes:

Nesterov :
φ(k+1) = ξ(k) − β∇g(ξ(k))
ξ(k) = (1 + γ)φ(k) − γφ(k−1)
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Problem Statement

Attacker model:

x(k+1) = (A+BQC)x(k) +BDᵀen + a(k).

where matrices A, B and C implement the Nesterov method,
Q = DᵀD and a(k) is the attacker signal.

Resilient Desynchronization Problem

Can we devise a lightweight technique to detect the presence of an
attacker?

Yes, by exploiting some properties of the Nesterov method.
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Possible Solutions in the Literature

MSR algorithm Discard f largest and smallest neighbor values

Not possible since number of neighbors is 2, so
f = 1 removes all neighbors.

Fault Detection Employ distributed fault detection like using a
bank of Kalman Filters or Set-Valued Observers [4].

Adds additional communication overhead and
computational complexity.
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Properties of the Desync Nesterov algorithm

If one injects a signal in node i then:

Var(x
(k)
i ) > Var(x

(k)
i+1) > · · · > Var(x

(k)
n );

Var(x
(k)
i ) > Var(x

(k)
i−1) > · · · > Var(x

(k)
1 );

for sample variance Var(x
(k)
i ) := 1

k+1

∑k
τ=0

(
x
(τ)
i − µi

)2
.

This is due to the properties of the transition matrix T of the
algorithm satisfying:

i) T12n = 12n;
ii) |Tij | < 1.

Silvestre, Hespanha and Silvestre Resilient Desynchronization for Decentralized MAC 9/15



Introduction
Problem Statement
Proposed Solution
Simulation Results
References

Centralized Resilient Desync Nesterov algorithm

Steps:
1) The central node computes the average and sample variance

of all nodes using:

v(k) = v(k−1) +
(
x(k) − µ(k−1)

) (
x(k) − µ(k)

)
;

µ(k) = µ(k−1) + 1
k

(
x(k) − µ(k−1)

)
;

2) Label an attacker:

i? = argmaxi vi(k);

3) Nodes with previous and next phase values do:

x
(k+1)
prev = x

(k)
prev, x

(k+1)
next = x

(k)
next;
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Distributed Resilient Desync Nesterov algorithm

Steps:

1) Node i keeps the average and variance for the immediate
neighbors

2) Label an attacker after a voting scheme:

i? = argmaxi zi(k);

3) Nodes with previous and next phase values do:

x
(k+1)
prev = x

(k)
prev, x

(k+1)
next = x

(k)
next;

Main Result

An undetected attack signal α(k) must have sample variance
bounded by a sequence converging to zero.
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Simulation Results (1/2)

Setup: A 10-node network running the Desync Nesterov algorithm
with node i subject to a faulty signal.

Inserting a sinusoidal signal
prevents convergence.

The amplitude decreases as
we move further away from
the corrupted node.

This property enables the
proposed resilient algorithm. 0 50 100 150 200 250 300

iterations

0

0.2

0.4

0.6

0.8

1

1.2

Node 1
Node 2
Node 3
Node 4
Node 5
Node 6
Node 7
Node 8
Node 9
Node 10

Silvestre, Hespanha and Silvestre Resilient Desynchronization for Decentralized MAC 12/15



Introduction
Problem Statement
Proposed Solution
Simulation Results
References

Simulation Results (2/2)

Setup: A 10-node network running the Resilient Desync Nesterov
algorithm with node i subject to a faulty signal.

Corrupting node i with a
uniform random signal;

The error at first is not
monotonic;

The stopping of neighbors
updates leads the remaining
nodes to converge. 0 50 100 150 200 250 300

iterations

10-5

10-4

10-3

10-2

10-1

100

Experiment1
Experiment2
Experiment3
Experiment4
Experiment5
Experiment6
Experiment7
Experiment8
Experiment9
Experiment10

Silvestre, Hespanha and Silvestre Resilient Desynchronization for Decentralized MAC 13/15



Introduction
Problem Statement
Proposed Solution
Simulation Results
References

Simulation Results (2/2)

Setup: A 10-node network running the Resilient Desync Nesterov
algorithm with node i subject to a faulty signal.

Corrupting node i with a
sinusoidal signal;

The behavior is clearer;

Without a correction
mechanism there is a
residual error to the optimal
desynchronization state. 0 50 100 150 200 250 300
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Concluding Remarks

We have shown theoretical properties of the Nesterov method
when applied to the Desynchronization problem.

As a consequence, variance is larger in nodes close to the
attacked one.

We present both a centralized and distributed version based
on these theoretical results.

Undetected attacks are characterized by signals with bounded
variance by a sequence converging to zero.

Additional correction mechanisms are needed if we want to
have optimal desynchronization.
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The end

Thank you for your time.
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